
7.1 Inequalities

here!

7.1 Inequalities

PRACTICE

© 2018 The Algebros, LLC

Rewrite the inequality so that the variable is on the left side. Then graph on the number line.

6. $3 > x$ 7. $-4 = 2$	$\leq y$	8. $0 < h$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>+ + + + + + + + + + + + + + + + + + + </u>	<1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

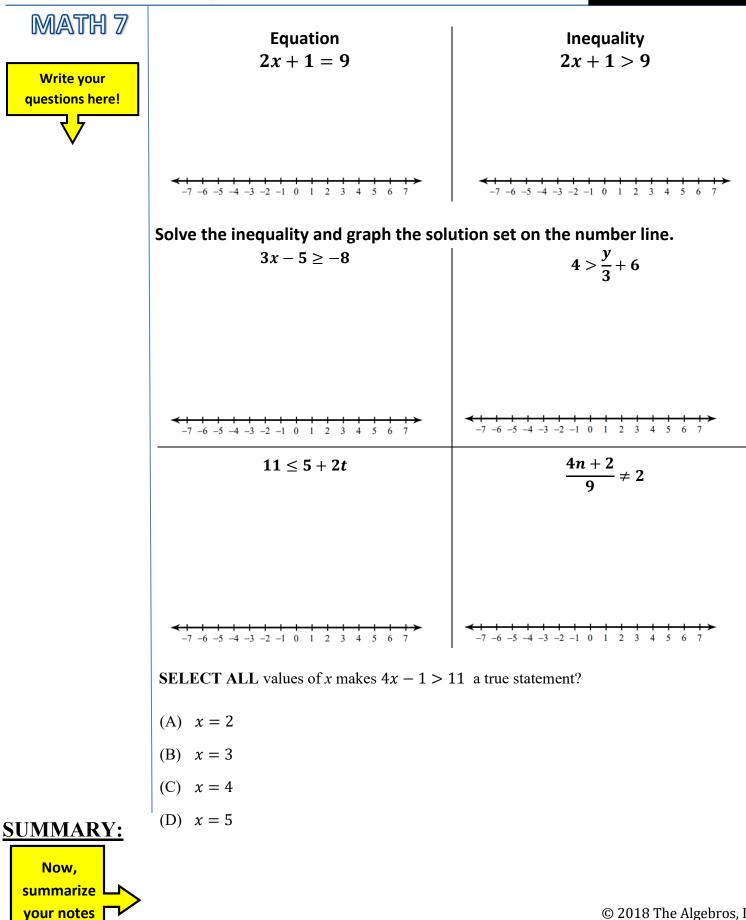
Graph the inequalities on the number line. Determine if the point is in the solution set.

9. $x > 4$	10. $g \leq -5$	11. $t < 1$
4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	$= \frac{1}{7} - 6 - 5 - 4 - 3 - 2 - 1 = 0 = 1 = 2 = 3 = 4 = 5 = 6 = 7$ Is $g = 0$ in the solution set?	-7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 Is $t = 3$ in the solution set?
12. $6 \le n$	13. $-3 \ge b$	14. $p \neq 2$
$\underbrace{\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\underbrace{\begin{array}{c} -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \\ \text{Is } b = -3 \text{ in the solution set?} \end{array}$	4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

Write an inequality for each graph (use *n* as your variable). Determine if the point is in the solution set.

15.	16.	17.
4 + 1 + 2 + 3 + 2 + 1 + 2 + 3 + 4 + 5 + 6 + 7 Is $n = 5$ in the solution set?	$\begin{array}{c} \bullet & \bullet & \bullet \\ \hline -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$ Is $n = 1$ in the solution set?	$\begin{array}{c} & \begin{array}{c} & & \\ -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$ Is $n = 0$ in the solution set?
18.	19.	20.
4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	$\begin{array}{c} & & & & \\ & & & & \\ & & & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$ Is $n = -5$ in the solution set?	4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +

WRAP UP


1. Use the inequality to express in words, graph on the number, and select values that are in the solution set.

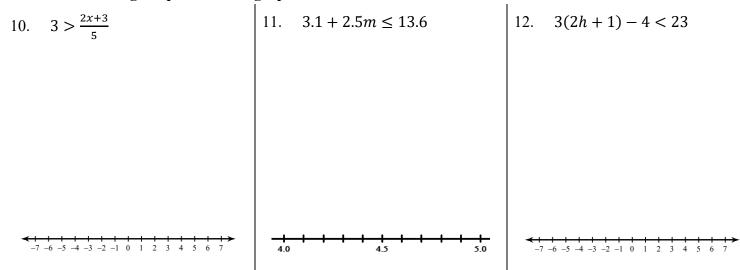
Inequality: $-2 \ge x$	Graph on number line:
Express in words:	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
	Circle all values of x that make the inequality true:
	x = 3 $x = 0$ $x = -5$ $x = -2$
Circle the words that make the sentences	
2. When graphing the inequality $n > 6$	on the number line you would use an circle and shade to closed right
3. The inequality $p \le 6$ means that p is	greater than or equal toinclude6 and you would6 in the solution set.less than or equal toexclude
EXIT TICKET –	
Write an inequality for each situa	ation and give two possible values that make the inequality true.
a. The school bus can hold at most 48	people.
Inequality:	Two possible solutions:
b. Students must have at least a 3.6 GI	PA to be on the honor roll.
Inequality:	Two possible solutions:
c. Baskin Robbins has more than 30 fl	lavors of ice cream.
Inequality:	Two possible solutions:
L	

© 2018 The Algebros, LLC

7.2 Solve Inequalities

here!

© 2018 The Algebros, LLC


NOTES

PRACTICE

Solve the following inequalities and graph the solution set on the number line.

Solve the lonowing inequalities and	graph the solution set on the number	
1. $3x + 5 > -1$	$2. -6 \le 2y + 4$	3. $\frac{h}{3} - 5 < -7$
		3
~		~ · · · · · · · · · · · · · · · · · · ·
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
4. $x + 5 > 2$	5. $-12 \leq 3g$	6. $\frac{2}{3}t + 4 < 2$
		5
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
, , , , , , , , , , , , , , , , , , , ,	,	
7. $7 \le 3n + 5 + 2$	8. $2(b+4) \ge 10$	9. $3p + 4 \neq 13$
7. 7 <u>3</u> 577572	$2(b+1) \le 10$	<i>y</i> . <i>y y y y y y y y y y</i>
-7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
		© 2018 The Algebros, LLC

Solve the following inequalities and graph the solution set on the number line.

SELECT ALL

SELECT ALL	
 13. Select all values of <i>x</i> that make 4<i>x</i> + 3 ≤ 11 a true statement. (A) <i>x</i> = 0 (B) <i>x</i> = 1 (C) <i>x</i> = 2 (D) <i>x</i> = 3 	 14. Select all values of <i>n</i> that make ⁿ/₂ + 5 > 7 a true statement. (A) <i>n</i> = 2 (B) <i>n</i> = 4 (C) <i>n</i> = 6 (D) <i>n</i> = 8
 15. Select all values of <i>x</i> that make -11 ≥ 3<i>x</i> + 4 a true statement. (A) <i>x</i> = -3 (B) <i>x</i> = -4 (C) <i>x</i> = -5 (D) <i>x</i> = -6 	16. Select all values of y that make $\frac{1}{3}y - 5 \neq -3$ a true statement. (A) $y = -3$ (B) $y = 0$ (C) $y = 3$ (D) $y = 6$

Translate to an inequality.

17. The quotient of a number d
and four is greater than six.18. The sum of 5 and a number n
is less than or equal to 7.19. Twice a number increased by
two is at least twelve.

7.2 Solve Inequalities

1. Solve the inequality and graph the solution set on the number line.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

 $3x + 5 \ge -13$

2. Select all values of x that make $8 + \frac{1}{3}x < 5$ a true statement.

(A)
$$x = -3$$

(B) $x = -6$
(C) $x = -9$
(D) $x = -12$

3. The perimeter of the rectangle shown below is less than 48 feet.

Part A

Which inequality represents the perimeter of the rectangle?

- (A) 5 + 3x + 4 < 48
- (B) 5 + 3x + 4 > 48
- (C) 10 + 6x + 8 < 48
- (D) 10 + 6x + 8 > 48

PART B

Solve the inequality.

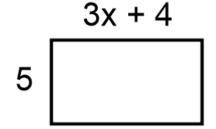
PART C

Which of the following are possible values of x that would make the inequality true?

 $x = 2 \qquad \qquad x = 8 \qquad \qquad x = 5 \qquad \qquad x = 3$

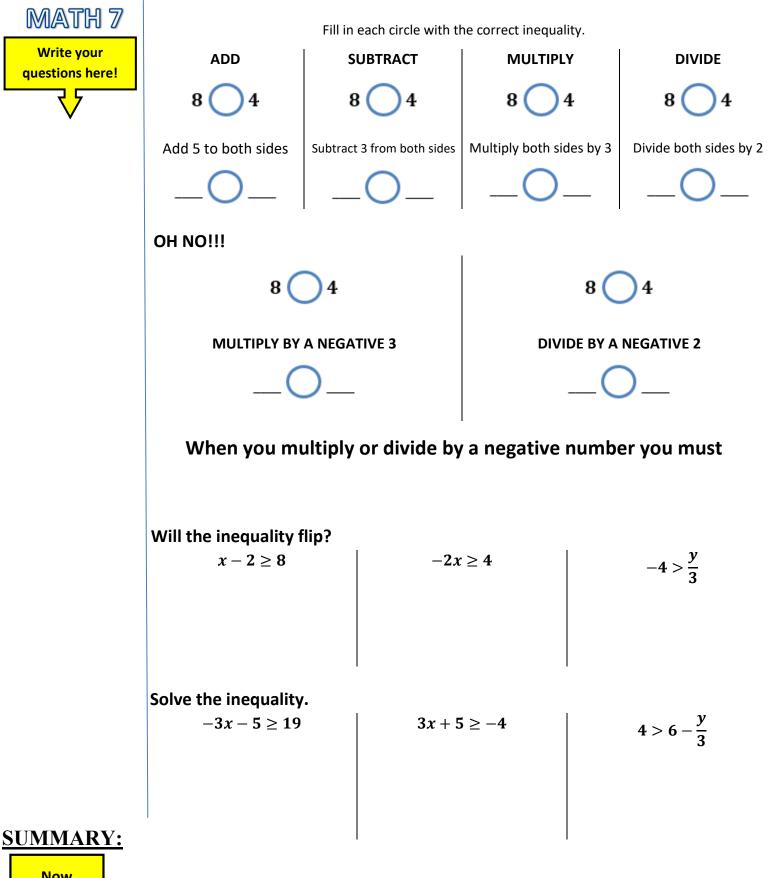
EXIT TICKET -

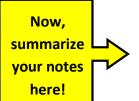
 Write an inequality for each situation and give two possible values that make the inequality true.
 a. Donuts cost 2 dollars each. Ted spent less than 20 dollars. How many donuts did Ted buy? Inequality: Two possible solutions:


b. Keri has 8 dollars. She makes 3 dollars every hour she works. Keri has more than 50 dollars. How many hours did she work?

Inequality:

Two possible solutions:


© 2018 The Algebros, LI

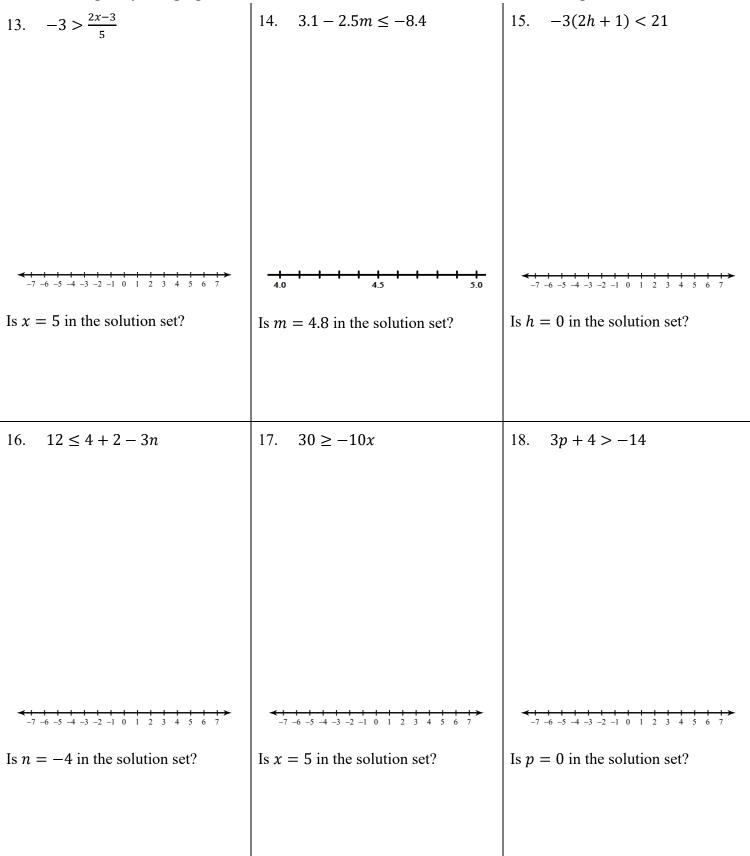

WRAP UP

7.3 Solve Negative Inequalities

NOTES

© 2018 The Algebros, LLC

PRACTICE


If you were to solve the following, would you flip the inequality? Circle the correct response.

1. $x + 5 > -1$	$2. 6 \le -2y$	3. $-\frac{h}{4} < -7$
YES the inequality flips!	YES the inequality flips!	YES the inequality flips!
or	or	or
NO the inequality would NOT flip!	NO the inequality would NOT flip!	NO the inequality would NOT flip!
4. $-5 > y - 1$	5. $5t \leq -20$	$6. 6 < -\frac{1}{3}n$
YES the inequality flips!	YES the inequality flips!	YES the inequality flips!
or	or	or
NO the inequality would NOT flip!	NO the inequality would NOT flip!	NO the inequality would NOT flip!

Solve the following inequalities.

Sorve the following inequalities:		
7. $4x + 7 > -1$	$8. -6 \le -2y - 8$	9. $-\frac{h}{3} + 5 < 7$
10. $x + 5 > -2$	11. $-12 \le -3g$	12. $5 - \frac{2}{3}t < 9$

Solve the inequality and graph the solution set on the number line. Determine if the point is in the solution set.

7.3 Solve Negative Inequalities

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

- 1. Solve the inequality and graph the solution set on the number line.
 - $5 9x \ge -13$

2. When solving the following, would you flip the inequality?

$$3x \ge -15$$

3. Mr. Kelly has 80 dollars. He spends 4 dollars every day on a Caramel Latte Mathiatto at Starbucks. Mr. Kelly always likes to have at least 20 dollars on him. How many days can Mr. Kelly buy a Caramel Latte Mathiatto and still have at least 20 dollars leftover?

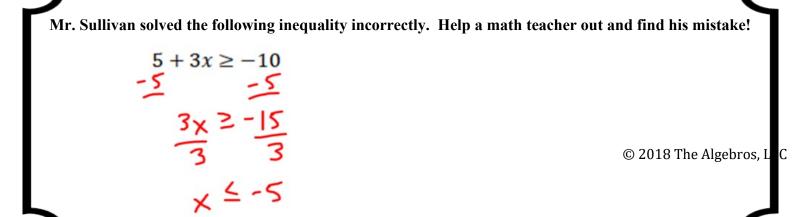
Part A

Which inequality represents Mr. Kelly's money?

- (A) 20 4d < 80
- (B) 20 4d > 80
- (C) 80 4d < 20
- (D) 80 4d > 20

PART B

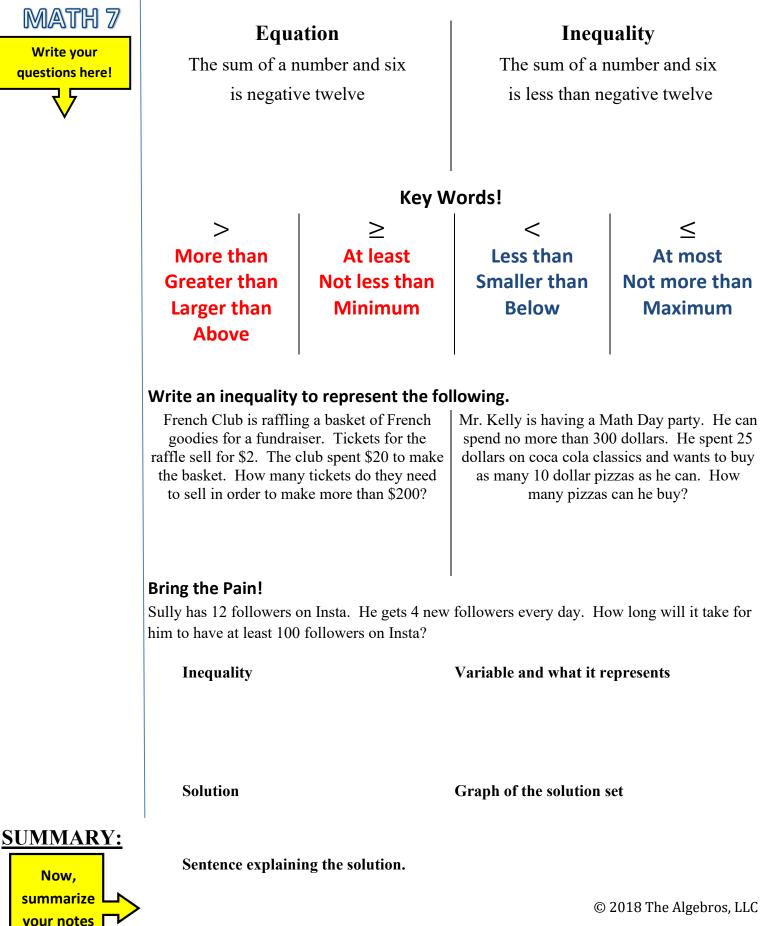
Solve the inequality.


PART C

Which of the following are possible values of d that would make the inequality true?

5 6

d = 12	d = 15	d = 20	d = 21
--------	--------	--------	--------


EXIT TICKET -

7.4 Modeling with Inequalities

here!

7.4 Modeling with Inequalities

PRACTICE

Multiple Choice. Select the inequality that represents the situation.

 1. Twice a number increased by seven is greater than four. (A) n + 2 + 7 < 4 (B) 2n + 7 < 4 (C) n + 2 + 7 > 4 (D) 2n + 7 > 4 	 2. When 12 is subtracted from 3 times a number, the result is no more than 24. (A) 12 - 3n ≤ 24 (B) 3n - 12 ≤ 24 (C) 3n - 12 < 24 (D) 12 - 3n < 24
 3. Jake has 8 cupcakes. He makes 12 cupcakes every hour. He plans to bake until he as at least 48 cupcakes. (A) 8h + 12 ≥ 48 (B) 8h + 12 > 48 (C) 8 + 12h ≥ 48 (D) 8 + 12h > 48 	 4. Saundra has 50 dollars to spend on souvenirs. She buys a magnet for \$2.50 and 6 keychains for her friends. The keychains are all the same price. How much are the keychains? (A) 50 ≥ 2.50 + 6k (B) 50 ≤ 2.50 + 6k (C) 50 ≥ 6k - 2.50 (D) 50 ≤ 6k - 2.50
 5. Anthony went to the hobby shop and bought 2 model airplanes at \$8.95 each and some paints. If he spent more than \$23.65, what was the cost of the paints? Include an equation to represent this. (A) 2 + 8.95 > 23.65p (B) 2(8.95) + p > 23.65 (C) 8.95 + 2p > 23.65 (D) 2p + 8.95 > 23.65 	 6. Kendra is buying bottled water for a class trip. She has 18 bottles left over from the last trip. She buys bottles by the case to get a good price. Each case holds 24 bottles. How many cases will she have to buy if she wants to have more than 160 bottles of water? (A) 24 + 18 > 160c (B) c > 160 - 24 - 18 (C) 24c + 18 > 160 (D) 24 + 18c > 160

Create an inequality to model the following. Solve your inequality. SHOW ALL STEPS!

- 7. The quotient of a number and three increased by 12 is no more than 20. What is the number? **Inequality:** Solution:
- 8. Five increased by product of a number and three is greater than 23. What is the number? **Inequality:** Solution:
- 9. The product of negative two and a number decreased by four is at least thirty-six. What is the number? **Inequality:** Solution:
- 10. The local flea market charges the vendors a flat rate of \$25 plus \$5 for each hour that they spend at the market. If the vendor owed at least \$60, how many hours did he remain at the flea market?

Inequality:

Solution:

Sentence explaining the solution:

Variable and what it represents:

11. Mr. Kelly starts the day off with 49 Jolly Ranchers. He eats 6 Jolly Ranchers every hour. He wants to have at least 4 Jolly Ranchers left over for his kids. How long can he eat Jolly Ranchers for?

Inequality:

Variable and what it represents:

Sentence explaining the solution:

12. A cellphone company charges \$19 plus \$0.25 for each text message sent. The total bill was greater than \$47.50. How many text messages were sent?

Inequality:

Solution:

Sentence explaining the solution:

Variable and what it represents:

© 2018 The Algebros, LLC

Solution:

WRAP UP

1. Andre has \$650 in a savings account at the beginning of the summer. He wants to have at least \$200 in the account by the end of the summer. He withdraws \$25 each week for food and entertainment. How many weeks will his money last?

Inequality

Variable and what it represents

Solution

Sentence explaining the solution.

2. Katelyn would like to have some bracelets made for her friends. A bracelet maker charges a flat rate of \$4, plus \$0.75 per bracelet. Katelyn has saved \$29 to for the bracelets. How many bracelets can she get?

Part A

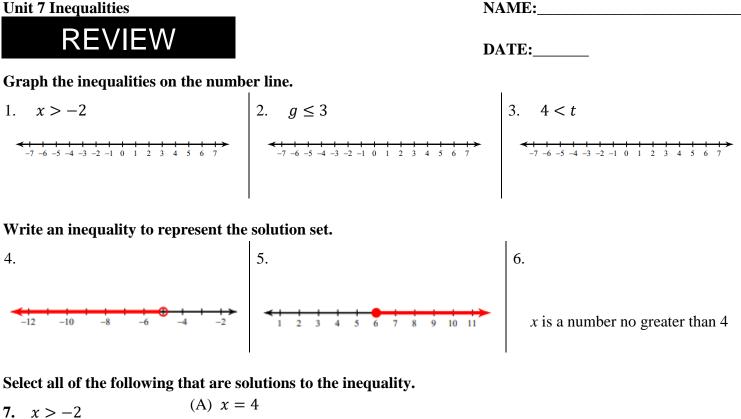
Write an inequality where b stands for the number of bracelets Katelyn can get.

PART B

Solve the inequality.

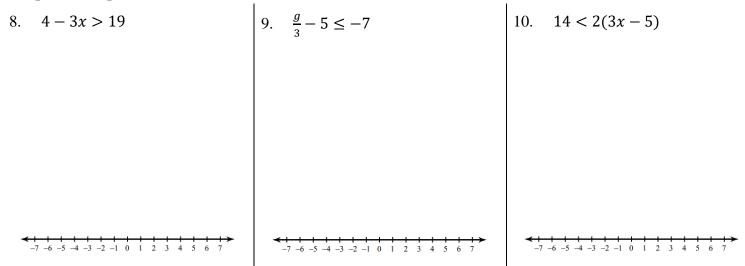
PART C

Which of the following are possible values of *b* that would make the inequality true?


EXIT TICKET -

Jamal rents a car for one day. The charge is \$30 plus the \$0.15 per mile. He spent no more than \$90. He writes the inequality below to represent this.

30m + 0.15 < 90


Is his inequality correct? Explain why or why not.

© 2018 The Algebros LC

x > -2(A) x = 4(B) x = -4(C) x = 2(D) x = -2(E) x = 0

Graph the inequalities on the number line.

Write an inequality to model the following. State what your variable represents.

- 11. There are at least 9 Star Wars movies.
- 12. Bob has 30 lightsabers. He gets 4 lightsabers every week. He plans to collect lightsabers until he has more than 180 lightsabers. How long will he collect lightsabers.

Inequality

Variable

Inequality

Variable