Write your questions and thoughts here!

Definitions of Circle and Parts of Circle

A circle is a set of points that are equidistant from a center point.
The point in the middle, equidistant from all points on the circle.

The distance from the center to the circle.

The distance through the center across the entire circle.
The distance around the circle.
The region contained within the circle.

Instructions: Find the missing piece.

1. Find the diameter.

Diamter $=$ \qquad
2. Find the radius.

Radius $=$ \qquad

FORMULA:
$D=2 r$

Rule \#1: The diameter is twice the radius.

FORMULA:
Rule \#2: The circumference of a circle is equal to diameter times pi.

Rule \#3: The area of a circle is equal to pi times the radius squared.

Remember that
3. Find the Circumference and Area of the following circle:

Area:

6. A cell phone tower has a range of 4 miles. Find the area covered by the tower.

Instructions: Find the missing pieces of each circle. Round answers to the nearest hundredth, if necessary.
2.

Radius:

Circumference:
Area:

Diameter:
Circumference:
Area:
Radius:
9. Find the missing pieces of a circle with a radius of 16 cm . Round answers to the nearest hundredth, if necessary.

Radius:
Circumference:

Diameter:
Area:

10. Mr. Sullivan is riding a bicycle with a tire radius of 12 cm . when he accidentally runs over a small puddle of paint on the road. When he continues riding, his bicycle leaves marks on the road that represent the circumference of the bicycle tire. How far apart are the marks on the road?

A semicircle is a half circle, formed by cutting the circle along a diameter. Find the area of the following semicircles by using the area of a circle formula and diving your answer by 2 .
11.

12.

Theradius is 6 yards.

EXIT TICKET

Write your questions and thoughts here!

Paralleogram: a quadrilateral with two pair of parallel sides.

Area of Paralleogram

FORMULA: $A=b h$
Rule \#1: The area of a parallelogram is the base times the height.
(Look for the red right-angle mark to determine the base and height!)

Instructions: Find area of the following parallelograms.

1. Find the area.

Area $=$
2. Find the area of a parallelogram with a height of 4 cm and a base of 12 cm .

Area $=$

Trapezoid: a quadrilateral with eactly ONE pair of parallel sides.

Area of Trapezoid

Rule \#2: The area of a trapezoid equals the height times the average of the bases.

$$
A=\frac{\left(b_{1}+b_{2}\right)}{2} \cdot h
$$

(Look for the red right-angle mark to determine the bases and height!)

$$
A=\frac{1}{2}\left(b_{1}+b_{2}\right) \cdot h
$$

3. Find the area of the following trapezoid:

Instructions: Find the area of the following trapezoids.

4.

Area: \qquad
5.

Area: \qquad
6. Find the area of the following compound figure.

Area: \qquad

Area: \qquad Area: \qquad

Area:
5.
6.

Area: \qquad
7.

Area: \qquad Area: \qquad

Find the area of each figure.

10.

Area: \qquad Area: \qquad
11. Find the missing base if the trapezoid's area is $1600 \mathrm{~cm}^{2}$.

80 cm

EXIT TICKET

Rectangular Prism: a 3-dimensional figure with two identical rectangles that face each other connected by rectangles

Examples:

Surface Area of a Rectangular Prism

The area of a rectangular prism is the sum of the areas of each face of the prism.
(There are 6 faces!)
formula: $\quad S A=2 l w+2 h l+2 h w$

Instructions: Find surface area of the following prisms.

1. Example. Find the surface area of the following rectangular prism:

Method \#2: VSE the formula

Method \#1: Add the areas of the 6 faces.
2. You try! Find the surface area of the rectangular prism:

Cyclinder: a 3-dimensional figure with two identical circles that are connected by a curved edge

Surface Area of a Cylinder

The surface area of a cylinder is the sum of the areas of each face (circle) and the rectangle that connects them.

$$
\text { FORMULA: } \begin{aligned}
& S A=2\left(\pi r^{2}\right)+(\pi D) \mathrm{h} \\
& S A=2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

3. Example. Find the area of the following cylinder, with a radius of 5 cm and a height of 10 cm .

Instructions: Find the area of the following cylinders.
4.

Surface Area: \qquad

Instructions: Find the area of each figure. Round to the nearest hundredth, if necessary.

Surface Area: \qquad
3.

Surface Area: \qquad

Surface Area: \qquad
4.

Surface Area: \qquad
6.

Surface Area: \qquad
8.

Surface Area: \qquad
© The Algebros from FlippedMath.com

15.3 Surface Area of Prisms \& Cylinders

Find the surface area of each figure.

9.

10.

Surface Area: \qquad Surface Area: \qquad

The surface area of a triangular prism works the same way! Find the surface area by adding the total area of each triangular faces (2) to the total area of each rectangular face (3).
11.

12.

EXIT TICKET

Sully has built a mailbox. It's basically a wooden box on a poll. The poll has a diameter of 8 cm . He needs to put a weather resistant paint on the outside. Find the total surface area of the mailbox and post so that he knows how much paint to purchase. (Hint: He does not need to paint the top or bottom of the poll.)

Volume: the amount of space an object occupies

Volume of a Rectangular Prism or Cylinder

The volume of a rectangular prism or cylinder is the area of the base times the height.

$$
\text { FORMULA: } V=B h
$$

where B is the area of one of the bases.

Instructions: Find surface area of the following prisms.

1. Example. Find the volume of the following rectangular prism:

Step 1: FIrst find the area of the base

Step 2: Multiply by the height
2. You try! Find the volume of the rectangular prism:

Cylinder: use the same formula as prism

$$
\text { FORMULA: } V=B h
$$

3. Example. Find the volume of the following cylinder, with a radius of 5 cm and a height of 10 cm .

STEp 1: FIRSt find the area of the base

Step 2: Mulitply by the height
Instructions: Find the volume of the following cylinders. Round to the nearest hundredth, if necessary. Assume angles that appear to be right angles are right angles.
5. 8 m
Volume: \qquad
4.

Volume: \qquad

Instructions: Find the volume of each figure. Round to the nearest hundredth, if necessary. Assume angles that appear to be right angles are right angles.

Volume: \qquad

Volume: \qquad

Volume: \qquad
7.

Volume: \qquad
2.

Volume: \qquad
4.

Volume: \qquad
6.

Volume: \qquad
8.

Volume: \qquad

15.4 Volume of Prisms \& Cylinders

Find the volume of each figure.
9.

10.

Volume: \qquad Volume: \qquad

The volume of a triangular prism works the same way! Find the volume by calculating the total area of each triangular base (2) and then multiplying by the height.
11.

12.

EXIT TICKET

Brust loves JellyBeans! At his favorite JellyBean store, he can bring his own container and fill it himself with the JellyBeans. He has two boxes that he can use. He obviously wants the most JellyBeans he can get. Should he use Box \#1 or Box \#2?

\qquad
Here are your important formulas:

$C=\pi \mathrm{D} \quad A=\pi r^{2}$
$\pi \approx 3.14$
$A=b h$
$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
$S A=2 l w+2 h l+2 h w$
$S A=2 \pi r^{2}+2 \pi r h$
$V=B h \quad V=B h$

Find the area of the following figures (5 pts each)

Instructions: Find the missing pieces of the circle. Round to the nearest hundredth, if necessary. (5 pts each)

Diameter: \qquad (${ }^{(1)}$

Circumference: \qquad (+2)

Area: \qquad (2)

Area: \qquad (+2) (+2)

Circumference: \qquad

Diameter: \qquad (1)

Instructions: Find the surface area of the following prisms and cylinder. Remember, any formulas needed are on the first page. (5 pts each)
9.

Instructions: Find the volume of the following cylinders. Round to the nearest hundredth, if necessary. Assume angles that appear to be right angles are right angles. Remember, any formulas needed are on the first page. (5 pts each)

Volume: \qquad
13.

Volume: \qquad Volume: \qquad
15. For an art project, Mr. Brust joined two semicircles to each side of a parallelogram with a base of 18 ft . and a height of 5 ft . The diameter of the semicircles was 7 ft . He needs to paint the figure, but isn't sure of the total area. Find the total area of the figure by finding the area of each semicircle and adding it

18 fEET to the area of the parallelogram.
16. Find the missing base if the trapezoid's area is $1000 \mathrm{~cm}^{2}$.

Find the surface area and volume of each figure. Show your work!

17. Surface Area: \qquad 18. Surface Area: \qquad
19. Volume: \qquad 20. Volume: \qquad

