14.1 Angles

Angle:

Name each angle:

Mark the following:

TYPES OF ANGLES

ACUTE

RIGHT

STRAIGHT

COMPLEMENTARY ANGLES

SUMMARY:

14.1 Angles

Directions: Rename each angle with 3 letters.			
	1) <1	2) <2	3) <3
	4) <4	5) $\angle 5$	6) <6
Directions: Classify each angle as either ACUTE, RIGHT, OBTUSE, or STRAIGHT.			
7)	8)	$\overbrace{-}^{R}$	0^{Q}
9)	10)	θ^{D}	

Directions: If not mentioned, identify whether the angles are COMPLEMENTARY or SUPPLEMENTARY. Then, solve for x .

Use the following diagram to answer questions 1 and 2.

	1) Rename $\angle 3$ using three letters.	$\begin{aligned} & \text { 2) } m \angle 3=(2 x-18)^{\circ} \\ & m \angle 4=(6 x+6)^{\circ} \\ & \text { Find } \mathrm{x} \text {. } \end{aligned}$

3) Find the sum of all the angles of each triangle.

Sum of the angles:

Sum of the angles:

Sum of the angles:

b) Looking at your results from finding the sum of the triangles, what do you think is going to be true for ALL triangles?

EXIT TICKET -

Using the below picture, circle all of the statements that are true.

- $x=90^{\circ}$
- $y=32^{\circ}$
- $x=75^{\circ}$
- $y=58^{\circ}$
- $\angle M B A$ and $\angle O B C$ are complementary.
- $\angle M B O$ and $\angle O B N$ are supplementary.

Math 7

Write your questions here!
v

EQUILATERAL

SCALENE

WHAT'S THE BIG IDEA?

Make an equation and solve for x .

RIGHT

SUMMARY:

Directions: Solve for x.

14.2 Triangles

Directions: Classify each type of triangle as ISOSCELES,	Directions: Solve for x .
EQUILATERAL, RIGHT, or SCALENE.	
1)	

3) For each diagram, use your knowledge of supplemental angles to solve for x, y, and z.

What do you notice about the angles that are across from each other?

EXIT TICKET -

Circle all of the statements that are true. Correct any statement that is false so that it could be true.

- A triangle could have angles that measured $45^{\circ}, 65^{\circ}$ and 70°.
- A triangle could have angles that measured $40^{\circ}, 50^{\circ}$ and 80°
- A triangle could have angles that measured $1^{\circ}, 2^{\circ}$ and 187°
- A triangle could have angles that measured $90^{\circ}, 90^{\circ}$ and 90°
- A triangle could have angles that measured $60^{\circ}, 60^{\circ}$ and 60°

14.3 Special Angles

Math 7

Write your questions here!

Find x and y using your knowledge from this Unit.

How many degrees do you think there will be around any one point?

Ex 2: Solve for x and y.

You try!
1)

Ex 3: Solve for x, y and z.

SUMMARY:

| Directions: Label each pair of angles as vertical, supplementary, complementary or none. | | |
| :--- | :--- | :--- | :--- |
| 1 | 2) $\angle \mathrm{e}$ and $\angle \mathrm{b}$ | 2 b and $\angle \mathrm{c}$ |

Directions: Solve for all variables.
3)

14.3 Special Angles

Directions: Label each pair of angles as vertical,	
supplementary, or complementary.	Directions: Solve for all variables.
1)	

3) For each item draw and label a possible representation.
a) A pair of vertical angles.
b) A pair of complementary angles.
c) A pair of supplementary angles
d) $\angle 1$ such that it is supplementary to $\angle 2$ and vertical to $\angle 3$
e) 7 different angles that form around a single point
f) <1 such that it is complementary to <2 and vertical to <3

EXIT TICKET -

Circle all of the statements that are true.

- One angle in a pair of vertical angles could be 60°.
- One angle in a pair of vertical angles could be 90°.
- One angle in a pair of vertical angles could be 120°.
- One angle in a pair of vertical angles could be 150°.
- One angle in a pair of vertical angles could be 200°.

For all non-circled statements, explain why they were not true.

Unit 14 Review: Angles and Triangles

NAME: \qquad
Period: \qquad

USE FOR \#1-5:	1) Rename $\angle 1$ with three points.
	2) Identify a pair of angles that are supplementary.
	3) Find the measure of $\angle 1$
	4) Find the measure of $\angle 2$
	5) Classify $\triangle A B C$ as either ISOSCELES, EQUILATERAL, RIGHT or SCALENE.
6) Classify $\angle 1$ and $\angle 2$ as either COMPLEMENTARY, SUPPLEMENTARY, VERTICAL or NONE.	USE FOR \#6-8 :
8) Find the measure of $\angle 1$	

DIRECTIONS: $9-10$: Solve for x .

9)

