14.1 Angles

NOTES

14.1 Angles

PRACTICE

14.1 Angles

WRAP UP

Use the following diagram to answer questions 1 and 2.		
A C C	1) Rename ∠3 using three letters.	2) $m \ge 3 = (2x - 18)^{\circ}$ $m \ge 4 = (6x + 6)^{\circ}$ Find x.

3) Find the sum of all the angles of each triangle.

Sum of the angles:

Sum of the angles:

b) Looking at your results from finding the sum of the triangles, what do you think is going to be true for ALL triangles?

EXIT TICKET -

14.2 Triangles

Now, summarize your notes here!

14.2 Triangles

PRACTICE

14.2 Triangles

WRAP UP

Directions: Classify each type of triangle as ISOSCELES, EQUILATERAL, RIGHT, or SCALENE.	Directions: Solve for x.
	2) 100° 13x°

3) For each diagram, use your knowledge of supplemental angles to solve for x, y, and z.

What do you notice about the angles that are across from each other?

EXIT TICKET -

Circle all of the statements that are true. Correct any statement that is false so that it could be true.

- A triangle could have angles that measured 45°, 65° and 70°.
- A triangle could have angles that measured 40°, 50° and 80°
- A triangle could have angles that measured 1°, 2° and 187°
- A triangle could have angles that measured 90°, 90° and 90°
- A triangle could have angles that measured 60°, 60° and 60°

14.3 Special Angles

NOTES

SUMMARY:

14.3 Special Angles

PRACTICE

Directions: Label each pair of angles as vertical, supplementary, complementary or none.			
e d	1) ∠e and ∠b	2) ∠b and ∠c	
a b	3) ∠a and ∠c	4) ∠c and ∠d	

14.3 Special Angles

WRAP UP

- 3) For each item draw and label a possible representation.
- a) A pair of vertical angles. b) A pair of complementary angles.

c) A pair of supplementary angles

d) \geq 1 such that it is supplementary to \geq 2 and vertical to \geq 3

e) 7 different angles that form around a single point

f) \geq 1 such that it is complementary to \geq 2 and vertical to \geq 3

EXIT TICKET -

Circle all of the statements that are true.

- One angle in a pair of vertical angles could be 60°.
- One angle in a pair of vertical angles could be 90°.
- One angle in a pair of vertical angles could be 120°.
- One angle in a pair of vertical angles could be 150°.
- One angle in a pair of vertical angles could be 200°.

For all non-circled statements, explain why they were not true.

Unit 14 Review: Angles and Triangles

NAME: _____

Period: _____

