M7 Unit 10 Review: Probability

Describe the likelihood of an event as impossible, unlikely, equally likely, likely or certain.

1. Your football team wins $\frac{1}{5}$ of the time.	Unlikely	
2. There is a 90% chance that you pass this test.	Likely	
3. The probability that the sun rises in the west tomorrow is 0.	Impossible!	
4. Picking an even number from a jar with papers labeled from 1 to 5.	Unlikely	

Find each theoretical probability as a FRACTION in SIMPLEST FORM, if you roll a standard number cube.

as a DECIMAL. 12. P (green) = $\frac{12}{16} = 0.8$ 13. P (green or blue) = $\frac{13}{16} = 0.87$

Tell whether the events are INDEPENDENT or DEPENDENT.

- 14. You roll a number cube twice. You get a 4 an a 1.
- 15. You toss a coin. If it is heads, you toss it again. If it is tails, you quit.

INDEPENDENT or DEPENDENT

INDEPENDENT or DEPENDENT

© 2021 The Algebros, LLC

Name:_____

A bag holds 3 green, 2 blue, and 5 magenta pens. You select a pen randomly.

Use the above information to answer the following WITHOUT replacement. 17.

16. Find P (green, green) $\left(\frac{3}{10}\right)\left(\frac{2}{9}\right) = \frac{\zeta}{90} = \frac{1}{16}$ 31. Find P (magenta, green) $\left(\frac{5}{10}\right)\left(\frac{3}{9}\right) = \frac{15}{90} = \frac{1}{6}$

Use the above information to answer the following WITH replacement.

- 18. Find P (green, green) 19 31. Find P (magenta, green) $\binom{3}{10}\binom{3}{10} = \frac{9}{10}$ $\left(\frac{5}{10}\right)\left(\frac{3}{10}\right) = \frac{15}{100} = \frac{3}{20}$
- The Cleveland Browns win 9 out of 16 games played. How many games will they win out of 100 20.

In middle school, Brust would go to a school dance and "Brust a Move" (dance) 50% of the time. The other 50% of the time he would stay home and read comic books. Suppose Brust's school had 3 dances one vear.

21. Make a tree diagram to show all of the possible outcomes for going to the 3 dances. - DANLE Then, list each outcome lie "DANCE, READ COMIC, DANCE"

Tree Diagram:	DANLE	DANLE Comics	Comics DANCE Comics	
	Comics	DAN LE Comics	DANLE Comics DANLE	
Outcomes: DDD, DDC, DCD, DCC CDD, CDC, CCD, CCC			Comics	
41. What is the theoretical probability the $\mathcal{P}^{(3)} \mathcal{D} \mathcal{A} \mathcal{N} \mathcal{C} \mathcal{E} \mathcal{S}$	-	to all three dances?		
Sully wants to know if he will see Mr. Brus	0	He simulates the <i>a</i>	outcome of the th	ree dances using

Sully wants to know if he will see Mr. Brust at the dances. He simulates the outcome of the three dances using a coin. A heads represents "Brust a Move!" and a tails represents "Reads Comics". Sully records the results here.

Simulation #1:	HTH	Simulation #2:	THT	Simulation #3:
Simulation #4:	TTH	Simulation #5:	THH	Simulation #6:
Simulation #7:	HTT	Simulation #8:	TTT	Simulation #9:

Simulation #10: THT

© 2021 The Algebros, LLC

According to simulation #8, how many dances did Brust attend? 72 Ro 43.

 $p(3 \text{ DANCES}) = \frac{1}{10}$

HHH THH HTT

44. According to the simulations, what is the *experimental probability* that Brust attends all 3 dances?