Describe the likelihood of an event as impossible, unlikely, equally likely, likely or certain.

Your Fortnite team wins $\frac{3}{4}$ of the time. <u>likely</u>
There is a 0% chance that you will grow 10 more feet. ImpossiBLE
The probability that the sun rises tomorrow is 1. <u>Certain</u>
It rains on $\frac{1}{5}$ of the days in July. Unlikely
There is a 5% chance of winning a contest. UNIKely
Picking a number less than 15 from a jar with papers labeled from 1 to 12. Certain
Picking an odd number from a jar with papers labeled from 1 to 12. <u>equally likely</u>

Use the spinners to fill in the table below. Express each probability as a fraction in simplest form.

Probability	Spinner 1	Spinner 2	Spinner 3
P(Yellow)	$\frac{2}{4} = \frac{1}{2}$	-1-3	$\frac{3}{6} = \frac{1}{2}$
P(Blue)	1 4	13	16
P(Red)	14	-/33	2/6=-1-73

The letters of the word GOOSE are put into a bag. You randomly draw a letter from the bag. Find the probabilities as FRACTIONS. 5 letters

© 2021 The Algebros, LLC

PRACTICE

$$P(1) = \underbrace{\frac{1}{6}}_{P(1)} \qquad P(2) = \underbrace{\frac{1}{6}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) = \underbrace{\frac{2}{6} = \frac{1}{3}}_{P(1)} \qquad P(1 \text{ or } 2) =$$

# on number cube	1	2	3	4	5	6
# of rolls	16	20	13	17	19	15

$P(1) = \frac{16}{100} - \frac{4}{25}$	$P(Not 2) = \frac{80}{100} = \frac{4}{5}$	$P(Even) = \frac{51}{100} = \frac{13}{60}$	$P(6) = \frac{15}{100} = \frac{3}{20}$
			$\Gamma(0) = 100$

A bag of marbles contains: 1 green, 2	blue, 1 yellow, 3 purple and 3	red. Write each answer as a DE	CIMAL,
$P (blue) = \frac{2}{10} = 0.2$	P (not red) = $\frac{7}{10} = 0.7$	$P(green) = \frac{1}{10} = 0.1$	1
P (not blue) = $\frac{8}{10} = 0.8$	P (purple) = $\frac{3}{10} = 0.3$	P (blue or red) = $\frac{5}{10} = 0.5$	0

10.1 Intro to Prob

Sully draws a pen at random from a bag of pens. He records its color and replaces it. His results are 1. shown in the table below.

Pens	Blue	Red	Black
Frequency	29	19	27

Find:

P(Blue)	
	(as a fraction)

 $P(\text{Not red}) = \underline{\qquad} P(\text{Black or Blue}) = \underline{\qquad} P(\text{Green}) = \underline{\qquad}$

(as a decimal)

WRAP UP