\qquad

Describe the likelihood of an event as impossible, unlikely, equally likely, likely or certain.

1. The school chess club wins $\frac{7}{8}$ of the time. \qquad
2. It snows on $\frac{9}{10}$ of the days in July. \qquad
3. There is a 0% chance that your feet will shrink overnight \qquad
4. The probability that the sun sets tomorrow is 1 . \qquad
Find each theoretical probability as a FRACTION in SIMPLEST FORM, if you roll a standard number cube.
5. $P(\operatorname{not} 1)=$ \qquad
6. $P(2$ or 5$)=$ \qquad
7. $P(1,2$ or 5$)=$ \qquad
8. $P($ not a 1 or not 2$)=$ \qquad
9. $P($ odd number $)=$ \qquad
10. $P(<5)=$ \qquad

Suppose a number cube is rolled 240 times. About how many times should each event occur?
11. You roll a 2 or 3.
12. You roll an odd number.

Find the experimental probability of each event based off of counting a bag of M\&Ms

colors	red	blue	green	brown	yellow
\# of M\&Ms	26	28	11	22	23

13. $P($ brown $)=$ \qquad
14. $\mathbf{P}($ Not green $)=$ \qquad
15. $\mathrm{P}($ brown or green $)=$ \qquad

A bag of marbles contains: 5 green, 2 blue, 2 yellow, 1 purple and 10 red. Write each answer as a DECIMAL.
16. $\mathrm{P}($ blue $)=$ \qquad
17. $P($ not red $)=$ \qquad
18. $\mathrm{P}($ green $)=$ \qquad

$\varsigma z^{\circ} 0=\left(\right.$ (uวå) ${ }^{\text {d }} \cdot 8 \mathrm{I}$	$\varsigma^{\circ} 0=\left(\right.$ pay fou) ${ }_{\text {d }} \cdot L I$			$\frac{0 \tau}{6}=\left(\right.$ (uวas 100) ${ }_{\text {d }} \cdot \downarrow \mathrm{I}$	
seump ozI moqe 'ZI	soump 08 moqe ' [I	$\frac{\varepsilon}{z}=\left(\mathrm{s}>\mathrm{d}_{\mathrm{d}} \quad 0 \mathrm{I}\right.$	$\frac{\tau}{\mathrm{L}}=(\mathrm{ppo})_{\text {d }} \cdot 6$	$\frac{\varepsilon}{2}=(2100401100)_{\text {d }} \cdot 8$	$\frac{\tau}{\tau}=\left(S^{\prime} \tau^{\prime} \mathrm{I}\right) \mathrm{d}{ }^{\prime} \mathrm{L}$
$\frac{\varepsilon}{\mathrm{I}}=(\mathrm{s} \mathrm{10} \mathrm{乙})_{\text {d }} \cdot 9$	$\frac{9}{s}=\left(\mathrm{I}\right.$ 10u) $\mathrm{d}^{\prime} \mathrm{S}$		ә¢!ssodu! ' \mathcal{L}	КГә>!І 'Z	КГəy!I 'I

